
Building and
Maintaining
a Successful
Open Source
Management
Strategy

WHITEPAPER

To say that open source software is everywhere is

an understatement. Approximately ninety percent

of organizations report using open source today1,

due in no small part to the competitive advantage2

that open source confers. Indeed, open source has

become so pervasive that many companies — from

small startups to flourish- ing enterprises — cannot

even track where all of their open source code and

dependencies are.

This state of affairs is remarkable for two reasons.

First, for open source enthusiasts, it underscores how

tremendously successful open source has become.

The open source ecosystem has evolved since

the 1990s from a set of niche projects with limited

corporate backing, like the Linux kernel and Mozilla,

into one that now counts companies such as Uber

and Twitter as major open source contributors. This

growth signifies a level of success for open source

that was virtually unimaginable even just a decade

ago, when scholars such as Steven Weber first took

serious note of the increasing influence of open

source beyond specific developer communities.3

1 Den Bleyker, Marlene. “As Open-Source Adoption Skyrockets in Enterprise,
Linux Addresses Ease of Use.” SiliconANGLE, 2 June 2017, siliconangle.
com/2017/06/02/ enterprise-open-source-adoption-skyrockets-linux-address-
es-ease-use-guestoftheweek-devnetcreate/.	

2 Rashid, Fahmida Y. “Open-Source Software Gives Competitive Advantage: Gart-
ner Survey.” EWEEK, 19 May 2019, www.eweek.com/servers/open-source-soft-
ware-gives-competitive-advantage-gartner-survey.	

3 Weber, Steve. The Success of Open Source. Harvard University Press,
2005.	

•	 Respecting the terms of

the licenses that govern

the software used by your

organization is just as important

when the licenses are open

source as when they are

proprietary.

•	 Developers choose to use open

source code to accelerate

development, but manual open

source management counters

the time-saving advantages that

drew them to open source in the

first place.

•	 In an environment where

software is deployed

continuously, one- time checks

for code quality, compliance,

security and other factors

within open source need to be

managed strategically.

•	 Best practices in open source

management include:

 - Automation

- Real-time auditing and tracking

- Integration with the software

development lifecycle

- Buy-in from across the

organization – including

developers, legal, and the

C-Suite.

TL;DR

At the same time, however, the pervasiveness of open

source code has also given rise to a set of new challenges.

With so many companies dependent on open source code

in one way or another, managing open source code has

become a daunting task. That’s especially true given that

those companies in some cases do not even realize where

all of their open source dependencies exist.

In order to leverage open source successfully and in a way

that minimizes risk, companies must ensure that they remain

compliant with open source licenses, stay ahead of security

vulnerabilities in third-party open source code, maintain

the quality of source code supplied by external groups and

much more.

Companies must also ensure that any open source code

that they develop themselves — either from scratch or

by building upon third-party open source components —

is properly licensed and managed. This entails choosing

the right license for the code, tracking where the code is

used and integrating third-party contributions into the code

properly.

“Merely identifying where open source is being
used is tremendously difficult because a company’s

software stack cannot be broken neatly into open
source and closed source components.”

In these types of environments, merely identifying where

open source is being used is tremendously diffcult because

a company’s software stack cannot be broken neatly into

open source and closed source components. As a result,

effectively managing all of the responsibilities associated

with open source software may seem impossible.

Fortunately, it is not. While open source management is

indisputably more diffcult today than it was in the past, it

is possible to overcome the hurdles in order to leverage

open source successfully and effectively. In order to run a

successful open source program it is critical to consider

the challenges arise when using open source at scale, and

understand the due diligence required to be a responsible

member of the open source community while mitigating risk.

These challenges were relatively easy to meet when the

typical open source strategy entailed depending on just a

handful of distinct open source tools. In the past, companies

might have relied on Linux to power some of their servers,

and used a tool like Samba to integrate those servers with

Windows environments. In that case, identifying which open

source projects the company used, and managing the

licensing, security, and code quality associated with those

projects, was simple and straightforward.

Today, however, the typical use case for open source

software looks very different. Instead of depending on open

source for specific and discrete needs, companies now rely

on open source to help accelerate product development,

integrating open source code in complex ways within or

alongside proprietary software platforms. Even a simple

website that uses WordPress to manage content may rely

on a complex mix of open source WordPress code and

proprietary WordPress plugins.

Top Open Source Projects
Open Source Software (OSS, or sometimes defined
as FOSS – free and open source software) is
software with openly shared source code that
others are free to contribute to and use as long as
it’s in accordance with the Open Source License.
The top open source projects have over 19,000
contributors from across different organizations.

Microsoft/vscode

facebook/react-native

tensorflow/tensorflow

angular/angular-cli

MicrosoftDocs/azure-docs

angular/angular

ansible/ansible

kubernetes/kubernetes

npm/nopm

DefinitelyTyped/DefinitelyTyped

1

2

3

4

5

6

7

8

9

10 6.0K

6.1K

6.5K

7.5K

7.6K

7.8K

8.8K

9.3K

10K

19K

Source: “Projects | The State of the Octoverse.” The State of the Octoverse, Github, Inc., octoverse.github.com/projects.

Respecting the terms of the licenses that govern

the software used by your organization is just as

important when the licenses are open source as

when they are proprietary.

The consequences of non-compliance are real.

Although most open source licenses are maintained

by nonprofit or community groups rather than

corporations with strong legal arms, those groups

tend to be aggressive about enforcing licensing

agreements. The GNU project, the oldest and

perhaps most influential project within the free

and open source software space, actively solicits

information about violations of its various licenses1.

And while major lawsuits involving open source

licensing violations were rare in the early days of the

open source software movement, that is no longer

the case; we’ve entered into an age where litigation

 “Violations of the GNU License.” GNU Project - Free Software Foundation, Free
Software Foundation’s Licensing and Compliance Lab, 15 Dec. 2018, www.gnu.

org/licenses/gpl-violation.en.html.	

Open Source
Management Challenges

The extent to which the typical company
relies on open source software today, as well
as the complex ways in which open source
is interwoven with closed source code, gives
rise to a number of distinct management
challenges.

License Compliance

•	 Respecting the terms of

the licenses that govern

the software used by your

organization is just as important

when the licenses are open

source as when they are

proprietary.

•	 Developers choose to use open

source code in order to save

time in fast- paced workflows,

but this can also create risk from

a quality-control standpoint.

•	 When relying on a large volume

of open source modules within

your software stack, manual

open source management

practice becomes a serious

time-sink for engineers and

counters the time-saving

advantages that drew them to

open source in the first place.

•	 In an environment where

software is deployed

continuously, one-time checks

for code quality, compliance,

security and other factors within

open source components does

not suffice; those checks need

to take place on a continual

basis.

TL;DR

related to open source code can put as much as $100 million

at stake2.

Beyond the direct financial costs from litigation, companies

that violate open source licenses may also suffer seriously

damaged reputations. This could lead to a loss of customers

who believe in the importance of open source, as well

as potential employees who might decline working for

an organization known for failing to uphold open source

licensing requirements. Companies also risk losing ownership

of their intellectual property in the event that it includes open

source that was not used properly, which could result in

ownership being assigned to another party.

2 “The $100 Million Court Case for Open Source License Compliance.” WhiteSource, White-
Source Software, 21 Mar. 2019, resources.whitesourcesoftware.com/blog-whitesource/the-
100-million-case-for-open-source-license-compliance.

Remaining compliant with Open
Source Licenses is challenging for
three main reasons:

1
Understanding the implications of each license

attached to open source code you either have

implemented or want to implement.

There are over 80 open source licenses currently available.

Many are frequently updated and even more are added on a

regular basis. Keeping track of the various requirements of

2
Open source code is often embedded within other

applications, possibly without any licensing information

included alongside the code.

As a result, it can be diffcult even to know which open source

licenses apply to the software that a company is using

unless engineers perform tedious, time-consuming reviews

of source code. This manual process often misses licenses,

especially those embedded in unknown dependencies your

open source code may rely on. Not only are these reviews

often inaccurate, such reviews are a poor use of engineers’

time. They can also lead to significant cost-ineffciency for

the company, since burdening highly paid engineers with this

work prevents them from spending their time on revenue-

generating initiatives.

3
In many cases the employees who choose to use an

open source program or module are not well qualified

to interpret and ensure compliance with its license.

Developers, whose primary objective is to build high quality

products, are usually the ones who decide which code

to use. Most lack the legal expertise to analyze complex

licensing requirements. Accidental licensing violations can

easily occur as a result — and even accidental misuse can

create serious liability.

each license is hard enough for a full-time lawyer, let alone

developers or business managers who simply want to use

open source code.

Like any other kind of software, open source is subject

to oversights (or, in some cases, deliber- ate insertion of

vulnerabilities) that can make it insecure. When a vulnerability

is discovered in an open source program, the discoverer may

or may not report it to the project’s maintainers, who may

or may not publicize it and may or may not choose to fix it

themselves.

What this means is that identifying vulnerabilities within the

open source code companies use and fixing them quickly

can be challenging. This is especially true in cases where

open source code is embedded within larger applications.

Security Vulnerabilities

“Without the ability to track which open source
components you use in real time, and discover

problems associated with them, you undercut your
ability to solve easy-to-fix issues before they turn

into major problems.”

When your company depends on an array of open source

tools and modules from a variety of sources spread

throughout its software stacks and infrastructure, determining

which vulnerabilities affect your code (and finding and

applying patches for them) becomes tremendously diffcult.

To illustrate why real-time security tracking and auditing

matters, consider what happens when a vulnerability such

as Heartbleed is discovered in an open source tool that you

depend on. If you fail to patch it quickly, you are at risk of

ending up in the position of a company like Equifax, whose

latest headline-making breach was the result of a failure to

address known security problems in open source software

components1. Without the ability to track which open source

components you use in real time, and discover problems

associated with them, you undercut your ability to solve

easy-to-fix issues before they turn into major problems.

Code Quality

The ability to share and reuse code is one of the

characteristics that makes open source so powerful.

However, it can also make open source risky from a quality-

control standpoint. When you depend on code written by

third parties, it is diffcult to enforce your organization’s

standards of code quality, which refers to how neatly and

securely code is written.

Complicating this challenge is the fact that developers

(understandably) choose to use third-party open source

code in order to save time in fast-paced workflows, even if

the code is of lower quality. An open source module written

by someone else may solve a problem that your developers

don’t have time to solve themselves, so they use the module

but introduce low-quality code.

Similarly, the quality of open source code can degrade over

time. The maintainers of a given project could change, and

code quality can suffer if less experienced or less devoted

developers take over. Open source projects that your

company depends on may also be abandoned altogether

by their upstream maintainers, leaving it up to you to keep

the code up-to-date and in conformance with current best

practices.

1 Tung, Liam. “Open Source’s Big Weak Spot? Flawed Libraries Lurking in Key Apps.” ZDNet,
23 Nov. 2017, www.zdnet.com/article/open-sources-big-weak-spot-flawed-libraries-lurking-
in-key-apps/.

Scale

The challenges of managing open source code can quickly

undercut your organization’s ability to scale its IT processes

and pace of development. When you begin relying on dozens

or hundreds of open source modules within your software

stack, a manual open source management practice becomes

a serious time-sink for engineers who have to invest their

limited time in tracking open source components within

the code base. Eventually, it will completely stop your

organization’s ability to continue evolving its technology solu-

tions with the help of open source.

Scheduling

In most cases, the open source code that you adopt is

unlikely to be developed according to the same schedule

or pace as the rest of your applications. Open source

projects set their own development roadmaps, and your

organization typically has no ability to control when a third-

party project will release its next major software update, fix

a security vulnerability or add a new feature that you require.

In some cases, an open source project may miss its release

deadlines entirely.

Despite this unpredictability, organizations that use open

source code must reconcile their own software delivery

schedules with those of the open source projects that they

depend on. Doing so is especially challenging given the

“When you depend on code written by third parties,
it is difficult to enforce your organization’s standards

of code quality.”

demands for continuous deployment of software updates

that companies face today, which are crucial for remaining

competitive in many industries. In an environment where

software is deployed continuously, one-time checks for code

quality, compliance, security and other factors within open

source components does not suffice; those checks need to

take place on a continual basis.

Programming Language Diversity

337 distinct programming languages are represented among

the open source projects hosted by GitHub alone1. While

developers might welcome the ease with which the open

source model lets them write code in the language of their

choice, the diversity of programming languages creates a

risk in cases where your organiza- tion reuses code written

in a language that your in-house engineers do not know well,

and therefore will have difficulty to maintain. This practice

limits the ability of your engineers to ensure that the code

they use meets quality and security requirements and

integrates optimally with the rest of your technology stack.

1 “The State of the Octoverse.” The State of the Octoverse, Github, Inc., 2019, www.oc-
toverse.github.com/.

“In an environment where software is deployed
continuously, on-time-checks for code quality,

compliance, security and other factors within open
source components does not suffice.”

Top Languages and

Fastest Growing Languages

These are both the most used open source
languages (over the past 5 years), and the fastest
growing of the 337 distinct programming languages
represented among the open source projects
hosted by GitHub.

Source: “Projects | The State of the Octoverse.” Github, Inc., octoverse.github.com/projects.

1

2

3

4

5

6

7

8

9

10

Javascript

Java

Python

PHP

C++

C#

TypeScript

Shell

C

RubyObjective C

2014 2015 2016 2017 2018

2.6K

2.2K

1.9K

1.7K

1.7K

1.6K

1.5K

1.5K

1.4K

1.4K

1K

Kotlin

HCL

TypeScript

PowerShell

Rust

CMake

Go

Python

Groovy

SQLPL

Top Languages Over Time Fastest-Growing Languages

Each of the issues described above presents a

serious challenge for virtually any organization that

uses open source code in a serious way today. In

fact, these challenges may appear so intimidating

that you might conclude that the best approach is to

avoid open source code entirely.

That strategy is rarely the right solution. Choosing

not to take advantage of the hundreds of thousands

of open source software tools available today

would likely put your company at a competitive

disadvantage. Moreover, avoiding open source

may well prove impossible in practice, since your

employees might use open source code without

even realizing it. An action as simple as deploying

a WordPress plugin on a company website, or

downloading an app on a company-owned phone,

means that your company is using open source.

Best Practices for Managing
Open Source Software•	 Open source challenges are

manageable, and avoiding

open source could actually put

your company at a competitive

disadvantage.

•	 Best practices in open source

management include:

 - Automation

- Real-time auditing and tracking

- Integration with the software

development lifecycle

- Buy-in from across the

organization – including

developers, legal, and the

C-Suite.

TL;DR

Key Goals of an Effective Open
Source Management Strategy

1 Achieve continuous visibility into and awareness of

open source code anywhere within their organization.

2 Avoid licensing compliance problems related to open

source code.

3 Minimize the amount of time that engineers spend

tracking and managing open source code manually.

4 React quickly to security vulnerabilities within open

source components that they depend on.

5 Align the code quality of open source dependencies

with their own standards.

Automation

A major challenge across several aspects of open source

management is lengthy and error-prone manual processes.

In order to counter this automating key workflows should

form the basis for any open source code management

strategy. Although identifying open source code within

your codebases and reviewing associated requirements

Essential Steps for Achieving your
Open Source Compliance Goals

manually may work on a small scale, managing open source

on a large scale requires tools and processes that allow

you to automatically track which open source modules you

are using, what the licensing and security requirements

associated with them are, and how those requirements

change over time.

Best practices entail deploying an open source management

tool that integrates with whichever tools your organization

uses to build and deploy software. The tool should be

able to scan your code automatically and continuously to

identify and track open source comments, whether they are

developed by you or a third party. It should generate reports

to notify you of licensing, compliance, quality or security

issues within that code. And it should be flexible enough to

work with any type of programming language in the rapidly

evolving open source ecosystem.

In order to be used most effectively, of course, automation

in open source management should be balanced with clear

escalation paths that allow for manual intervention when

necessary. For example, your open source management tool

should automatically flag issues and notify the legal team

when open source licenses violate in house policies, but

you need to have a clear company process to resolve those

issues.

“Automation not only minimizes expenditure of
manual time and effort — which in turn facilitates
scaling — but also helps to ensure consistency

across teams and projects with regard to the way in
which they manage open source code.”

By embracing automated processes involved in managing

open source software, organizations can take advantage of

market opportunity and stay innovative, while mitigating risks.

Real-Time Auditing and Tracking

The introduction of agile development has accelerated the

speed at which software changes. Open source codebases

are constantly updated, making it more difficult to address

problems with code performance, security and compliance.

Real-time auditing allows you to re-evaluate the current state

of your open source compliance and security. With real-

time auditing, your codebase is scanned at every deploy.

Issues and policy violations are identified immediately for

streamlined resolution.

When you monitor your codebases in real-time for open

source code, you not only keep an up-to-date database

of which open source modules you are using, but you also

position yourself to react instantly to security vulnerabilities,

feature updates or other important changes to the open

source projects on which you depend.

Integrate With Your Software Development Lifecycle

Keeping pace with continuous delivery schedules requires

baking open source compliance and management directly

into software delivery processes. In other words, tracking and

“Keeping pace with continuous delivery schedules
requires baking open source compliance and
management directly into software delivery

processes.”

auditing of open source code can’t be disconnected from the

rest of your software delivery pipeline; they need to become

an integral part of it.

The only way to achieve this goal is to deploy open source

manage- ment tools that can integrate with the rest of your

software deliv- ery and deployment tool set and perform

tasks such as Common Vulnerability Exposures/Enumeration

(CVE) scanning and license auditing in real-time as code rolls

from development to testing to release.

Buy-In

Keeping pace with continuous delivery s open source

software requires achieving the support of a variety of

stakeholders. They range from technical employees (like

developers), to legal experts or managers who focus

squarely on business outcomes.

It is critical to communicate the importance of proper open

source code management to each of these groups, as well

as empower them with the tools they need to do their part in

managing open source code properly.

Conclusion
Today, the vast majority of organizations are taking

advantage of open source software. In order to ensure

that the benefits of open source are not outweighed

by risks such as licensing compliance problems, poor

code quality, or security vulnerabilities, organizations

must manage their open source code responsibly.

Effective management entails the use of automated

tools to keep track of which open source codebases

and licenses your organization uses, real-time

monitoring and auditing of security vulnerabilities

and licensing compliance efforts, and the integration

of open source management into the rest of your

software delivery pipeline.

About FOSSA
FOSSA can help to achieve all of these best practices. By

providing automated, real-time licensing and vulnerability

management for open source code no matter where it exists

within your software stack, FOSSA helps organizations minimize

the risk and maximize the benefit of open source. Request

a demo to learn more, or import FOSSA from GitHub to start

analyzing your open source dependencies today. fossa.com

