
Mitigating IP Risk:
Three Strategies
to Ensure
Open Source
Compliance

WHITEPAPER

Most companies today leverage open source

software to accelerate product development,

reduce total cost of ownership, increase software

stability, and enhance software security posture.

In fact, according to the Linux Foundation’s most

recent report, 72% of enterprise companies cite

using open source frequently1. While open source

has many merits (such as the ones mentioned

above), companies should not view open source as

completely free. It’s more like “free puppy” free —

great joy that comes with responsibility. Using open

source software comes with a set of obligations

and responsibilities as well as risks. As open source

software continues to be adopted at an increasing

rate compliance with open source licenses becomes

a more pressing initiative.

1 “Corporate Open Source Programs Are on the Rise as Shared Software
Development Becomes Mainstream for Businesses.” The Linux Foundation, 11
Sept. 2018, www.linuxfoundation.org/uncategorized/2018/08/corporate- open-
source-programs-are-on-the-rise-as-shared-software-development-becomes-
mainstream-for-businesses/.

Open Source is free, but there are

responsibilities inherent to using

open source as it comes with a set

of obligations — as well as risks.

As open source software continues

to be adopted at an increasing

rate compliance with open source

licenses becomes a more pressing

initiative.

Irresponsible usage of open source

could result in litigation risk, lowered

valuation, loss of market opportunity

and damaged reputation which could

impact sales and the recruitment of

top talent.

Three approaches to mitigating risk

in using open source include manual

audits, semi-automated compliance

and continuous compliance. There

are pros and cons to each approach,

but continuous compliance fits

best for companies leveraging agile

development methodologies, DevOps

and CI / CD technology tools.

Open source brings about several

questions regarding intellectual

property (IP). Most of the risk inherent

to using open source components

involves violating IP law or losing the

rights to your IP through the terms of

the license (see: copyleft licenses).

For more information about licenses

and their implications visit tldrlegal.

com.

TL;DR Overview

Industry Adoption of Open Source

Source: Todo Group. “Open Source Programs Survey.” GitHub Todogroup Survey: Open
Source Programs Survey, Todo Group, github.com/todogroup/survey.

The enterprise has embraced open source, regardless of industry.

All companies across all industries

Technology (Software or IT) Companies with more than 10,000 employees

Companies with more than 10,000 employees

All companies across all industries

All companies across all industries

All companies across all industries

37% 16% 47%

77% 8% 15%

63% 11% 26%

40% 16% 44%

37% 10% 53%

27% 20% 53%

Yes, we have an
open source program

We are planning an
open source program

We do not have an
open source program

Open Source License Risk

Litigation Risk
An open source license has been recognized as a

legally bind- ing contract2 in federal courts. Violating

the terms of a license can expose your company,

giving the owner of the open source project grounds

to sue. Similar to those trolling companies to ensure

GDPR compliance (The EU’s data privacy legislation)

or patent trolls, there are people who actively look

for GPL licenses in order to profit3.

Lowered Valuation
Open source audits are a standard part of due

diligence for M&A as well as preparing to go

public (IPO). They are also increasingly included

as requirements in fundraising rounds, establishing

business lines of credit, and more. Having copy- left

components in your distributed software can not only

lower the value of your company, but can completely

derail a deal due to the fact you may have to share

your IP as required by the license. When identified

too late in the transaction procedures, changing out

an open source component may no longer be a viable

option or may derail important engineering efforts.

2 Artifex Software, Inc. v. Hancom, Inc., Case No.16-Cv-06982-JSC (N.D. Cal. Sep.
12, 2017.

3 Meeker, Heather. “Patrick McHardy and Copyright Profiteering.” Opensource.
com, 24 Aug. 2017, opensource.com/article/17/8/patrick-mchardy-and-copy-

right-profiteering.	

Loss of Market Opportunity
One of the more common (and underrated) risks

is the loss of revenue or market opportunity. The

most obvious events that trigger open source due

diligence are during fundraising, acquisition, and

IPO events. However, there is an increasing number

of companies that require a due diligence report,

and sometimes even the continuous availability of a

report, before closing a transaction. This is especially

prevalent amongst enterprise brands and can also be

a frequent requirement for any software deployed on-

prem or any products that are part of a manufacturing

process (i.e. radio systems embedded within

automotive manufacturing). Similarly, some online

marketplaces like Google Cloud Platform require due

diligence reports before allowing you to deploy your

product in their marketplace.

Damaged Reputation
The open source community is all about transparency

and collaboration. A big part of this for companies is

ensuring you are consuming open source responsibly

and fulfilling the obligations as dictated by the

license. Another huge facet of the open source

community is excellent engineering talent. Violating

open source license requirements may not lead to

financial implications, but it can hurt the company’s

brand, the engineering brand, and engineering

recruiting / retention efforts.

•	 Awareness of open source

policy

Manual Audtis Pros:

•	 Missing product deadlines

•	 Prolonging a sales cycle for a

large client, or worse losing them

•	 Delayed launch into an

ecosystem

•	 Lost engineering productivity

•	 Inaccurate reports

•	 Difficult to scale

Manual Audtis Cons:

Top Apporaches to
Mitigating Risk

Manual Audits
Although it is both the most time consuming

and the least accurate, many companies rely

on spreadsheets and forms in their approach to

compliance. Generally, this approach is triggered by

a compelling event in the form of a sales opportunity

or a potential partnership, acquisition, raise, etc. As

part of due diligence, the key stakeholders ask for

your Bill of Materials or Attribution Report. Suddenly

your legal, product, compliance, and engineering

teams (or some mix of the above) are thrown into an

all- hands-on-deck emergency.

The manual approach general involves several

approval processes. The first is typically an open

source request form. Once a company has scrambled

to produce the proper attribution/bill of material

reports they put a policy in place. As the engineers

work on developing software for a company,

they need to run any open source component

by legal to review before integrating it into your

company’s proprietary software. This then generates

a spreadsheet of all requested open source

components. Note, this is not the most reliable

source of information because it requires both self-

reporting (seen as a blocker by most engineers) and

it does not include deep dependencies which your

company is still liable for.

In many cases, the engineering team is not logging all

of the open source components they use in a project.

When the code is deployed, the engineering team

scrambles to track down all of the dependencies.

This might even require a code freeze in order to have

a static body of code to analyze. In a fire drill your

most knowledgeable, connected engineers will be

leading the charge. They will have the best context

on what open source components have been brought

in, or at least how to navigate the codebase.

Next, the dependencies and their licenses are

compiled in a list that legal must pour through to

ensure that there is no legal liability to using each of

these components. Any issues require tracking down

the engineers to get a better understanding of why

the software was used so context can be applied

when resolving the issue.

Finally, key reports must be generated based on the

given criteria. Manual processes are in direct conflict

with modern development practices which advocate

for an agile method and continuous integration and

continuous deployment/continuous delivery (CI/CD).

Essentially, this process means that engineering

teams are continuously adding new functionality and

making changes to the production codebase.

Semi-Automated Compliance
As a company matures and scales it may find a

manual process is not sufficient due to the number of

engineers, the number of open source components

used, and the frequency of required reports.

These companies start to have more regular audit

processes in place which allow them to bake the

cost of developing a due diligence report into your

engineering cycle.

Traditionally semi-regular audits are performed

with legacy code scanning tools like Black Duck or

Flexera Code Insight (formerly known as Palamida).

There are also a variety of open source tools that

help generate a list of dependencies such as

FOSSology. These tools require involvement from

Engineering or DevOps to integrate (engineering

time required varies based on your CI/CD tools and

your code repositories). They then generate a list

of dependencies as well as the declared licenses

associated with each open source component.

The resulting information about the open source

components and their licenses then needs to be

audited by the legal team to identify any potential

conflicts with internal policy, as well as determine

steps for resolution. Generally, this requires back

and forth with the engineering team to understand

how and where the open source component was

used and whether it is incorporated into distributed

software. Depending on the issues found, resolution

can involve anything from upgrading a component

to a licensed version, to finding a new component

to rebuilding all parts of the software that use the

flagged open source component. Once all issues are

resolved and rescanned, an attribution report needs

to be generated and published.

Continuous Compliance
Continuous compliance is a newer concept.

By definition, it means your company maintains

compliance with every code commit. Generally,

in order to achieve continuous compliance an

•	 Planned audits

•	 Lower exposure to risk

•	 Possible to outsource portion

Semi-Automated
Compliance Pros:

•	 Decreased developer

productivity

•	 High expenses for third-party

consultants

•	 High labor cost for legal teams

•	 Requires engineering

implementation time

Semi-Automated
Compliance Cons:

investment in third-party software is required. This

software should integrate with your developer’s build

system (Travis, Jenkins, Circle Ci) and/or repository

(Bitbucket, Github, etc) so that as new code is

committed, new open source dependencies can

be evaluated. This allows you to streamline issue

management, reducing the time legal teams (and

developers) are required to invest.

When evaluating a continuous compliance solution

you should ensure that it has:

•	 Developer friendly CI/CD integrations

Any 3rd party software needs to be easy to

integrate in order to maxi- mize both coverage

and adoption. It is important that you ensure the

software works with the languages, package

managers, repositories, and CI/CD tools your

teams use. Generally, at large companies,

different teams use different toolsets.

•	 Intelligent Issue Management

Evaluate the issues management workflows

within the product. Ensure there are workflows

for auto-approvals, manual interventions, and

logging issues with you’re engineering team’s task

management tool (JIRA). The issue management UI

should also include actionable intelligence to limit

the back and forth between legal, DevOps, and

engineering, enabling you to promptly resolve any

issues.

•	 Policy Management

At scale, your company needs to ensure the

•	 No interruptions

•	 Always ready to provide due

diligence

•	 Reduced legal costs

Continuous
Compliance Pros:

•	 Generally requires 3rd Party

Software

•	 Requires engineering

implementation time

Continuous
Compliance Cons:

software you choose can apply different policies

to different products. Because different types

of applications/software etc. require different

disclosures/attributions (etc.) based on how the

software is used and distributed. Ensuring you

can apply different policies to different products

will reduce the number of policy violations/

components flagged during the dependency scan.

•	 An Attribution Reporting Suite

Reporting should be built into your solution.

Ideally, the solution you evaluate allows you to

customize the format and the information included

in your attribution reports and Bill of Materials.

•	 Accurate Dependency and License Identification

Last (but not least), you want to ensure that the

dependency scanning produces accurate results.

The solution you evaluate should accurately

identify the dependencies as well as the licenses.

Ensure the solution is not relying solely on

declared licenses, which are often incorrect. False

positives create a lot of noise and additional work

for both engineering and legal teams.

Why Continuous Compliance
puts you at an Advantage

Modern software development has moved from the

waterfall (one step at a time) to agile methodology.

Complementing the rise in the agile method is the

trend of CI/CD (continuous integration and continuous

delivery and/ or continuous deployment). Together,

this means that software engineers are moving

faster and making traditional compliance methods a

barrier to success. Long story short, good software

development means continuously committing code to

your production codebase.

Continuous delivery means in order to out-innovate

(or even keep up with) the market, engineers

need to be continuously adding new open source

dependencies to their project without major

roadblocks. Changes in software delivery practices

mean best practices for mon- itoring open source

compliance should adapt and mirror the software

development practices. By harnessing a continuous

compliance process, companies can provide

due diligence reports and decreased risk without

impinging on developer or legal efficiency For more

information about how FOSSA can help you develop

a continuous compliance program, contact us or

schedule a demo.

About FOSSA
FOSSA can help to achieve all of these best practices. By

providing automated, real-time licensing and vulnerability

management for open source code no matter where it exists

within your software stack, FOSSA helps organizations minimize

the risk and maximize the benefit of open source. Request

a demo to learn more, or import FOSSA from GitHub to start

analyzing your open source dependencies today.

fossa.com

