
The 2021 State 
of Open Source 
Vulnerabilities



Open source is everywhere. It comprises around 90% of the components of modern 

applications, and is used by developers across a wide range of industries. Unfortunately, 

as open source usage has increased, so too have vulnerabilities within open source 

code. 

 

To better understand the current threat landscape, we recently examined the FOSSA 

Vulnerability Database — sourced from multiple vulnerability feeds as well as our own 

research team — to gather insights into trends in open source vulnerabilities. 

 

In this report, we’ll take an in-depth look at today’s open source vulnerability landscape, 

including areas like:

Common vulnerabilities

The distribution of vulnerabilities across popular languages

Longitudinal trends in vulnerabilities over several years

The most prevalent CWEs in each language

Libraries with the most vulnerabilities

Best practices to keep your organization’s software free of vulnerabilities

1The 2021 State of Open Source Vulnerabilities by



Vulnerabilities Per Language

Java
44.48%

Javascript
15.16%

Go
5.14%

Python
10.56%

PHP
12%

Ruby
5.87%

.NET
6.18%

Rust
0.60%

2The 2021 State of Open Source Vulnerabilities by



With Java and Javascript being among the most-used languages, it is not a surprise 

to see them on top of this list. Popular languages tend to attract more security 

researchers and scrutiny. As newer technologies go mainstream and are adopted more 

widely, we expect the number of identified vulnerabilities associated with them to grow.

3The 2021 State of Open Source Vulnerabilities by



Time Distribution of Vulnerabilities

The yearly distribution of vulnerabilities shows that Java has led the vulnerability count 

during three of the past five years. In 2019, Python overtook Java as the second-most 

popular programming language, yet its share of vulnerabilities remains low. In contrast, 

Go’s growing popularity in 2017 and 2018 is reflected in its increase in exploit count.

Java Javascript Python PHP Ruby Go .NET

2020

34

17
17

15

4
6

5

(Numbers in %)

2019

24

16

21

9

3 3

7

2018

47

13

10
9

5
7

9

2017

39

15

9 9

6
4

6

2016

45

17

8 8 8

4
5

2015

51

13

8
10

6
5 5

4The 2021 State of Open Source Vulnerabilities by



Top 10 CWE’s most commonly found

CWE-79

CWE-94CWE-22

CWE-20 CWE-400

CWE-264

CWE-200

CWE-119 CWE-611

1373

1275

582 438496

396

436

376 298

Cross-Site Scripting

Input Validation and
Representation

Information
Exposure

Code
Injection

Path
Traversal

Uncontrolled Resource
Consumption

Permissions, Privileges,
and Access Controls

Buffer Overflows Improper
Restriction of
XML External
Entity
Reference

CWE-254 267

Software Security

CWE-79, also known as Cross-Site Scripting (XSS), is one of the most prevalent 

vulnerabilities in web applications and leads the pack on the most commonly found 

vulnerabilities list.  

 

Following CWE-79 is CWE-20, Improper Input Validation. This is a class-level weakness 

where the product does not validate or incorrectly validates the input. Attackers who 

5The 2021 State of Open Source Vulnerabilities by



exploit this vulnerability are able to craft an input that is not expected by the rest of the 

application, leading to unexpected consequences.  

 

Both of these vulnerabilities are related to an input not being validated correctly. 

Developers should understand the context of all the data and their input sources to 

avoid vulnerabilities of this kind. Per MITRE:

Assume all inputs are malicious. Use an “accept known good” input validation strategy, 

i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any 

input that does not strictly conform to specifications, or transform it into something 

that does.

When performing input validation, consider all potentially relevant properties, includ-

ing length, type of input, the full range of acceptable values, missing or extra inputs, 

syntax, consistency across related fields, and conformance to business rules.  

MITRE, CWE-20: Improper Input Validation. Retrieved January 4, 2020.  

 (https://cwe.mitre.org/data/definitions/20.html)

6The 2021 State of Open Source Vulnerabilities by



Cross-Site Scripting
20

19 39 38 9 33

20
18 80 37 31 32

20
17 38 29 23 20

20
16 40 24 15 13

20
20 91 27 65 12

20
15 28 25 12 12

Java Javascript Python PHP

CWE-79 (Cross-Site Scripting) errors are found in almost all web languages. Their 

prevalence demonstrates how easy it is to make these kinds of errors and how 

important it is for developers to be mindful of sanitation and input validation as they 

build their applications. As a rule, assume all inputs are malicious and only accept inputs 

that have been verified or sanitized.

7The 2021 State of Open Source Vulnerabilities by



Improper Input Validation

CWE-20, Improper Input Validation, describes unvalidated inputs which alter the 

expected code output. An example of this would be providing unexpected values to 

change data flow or access confidential information. CWE-20 is similar to CWE-79 in 

that it handles inputs, but describes cases where arbitrary code is not executed. Both 

20
15 69 5 3 8

Java Javascript Python PHP

20
20 35 38 6 21

20
16 69 5 3 9

20
17 71 7 3 5

20
18 138 54 11

20
19 28 43 10 4

8The 2021 State of Open Source Vulnerabilities by



9

vulnerabilities can occur together. 

 

Historically, there have been a disproportionate number of CWE-20 exploits in Java. 

However, in 2019, there was an increase in the number of CWE-20 vulnerabilities in 

Javascript and we see that trend continue in 2020 as well. Again, always verify inputs. 

 

Another common mistake developers make is doing only client-side validation to 

perform bound-checking. While necessary and important for UI functionality and initial 

validation, it is not a substitute for server-side validation. As a best practice, input 

validation must be performed both on the client side and server side.

The 2021 State of Open Source Vulnerabilities by



Information Exposure

CWE-200, which is related to the unintended information exposure of private or 

otherwise sensitive information, has been among the most prevalent vulnerabilities in 

the past few years. Amongst the ecosystems that we have examined, Java followed by 

php see the most instances of this particular type of vulnerability.

Java Javascript Python PHP

20
18 29 2 12 9

20
17 24 1 9 5

20
15 11 1 3 4

20
19 26 5 11 6

20
16 14 41 2 5

20
20 18 8 7 4

10The 2021 State of Open Source Vulnerabilities by



Code Injection

CWE-94, Improper Control of Generation of Code, occurs when software allows a user’s 

input to contain code syntax. This creates a scenario where an attacker can develop 

code in a manner that will impact the control flow of the software. Similar to other 

CWEs mentioned, this happens primarily due to unsanitized inputs within an application. 

This is another reason why it’s important that developers always sanitize inputs.

20
19 4 10 17 3

Java Javascript Python PHP

20
20 5 6 3 4

20
18 11 2 7 3

20
17 10 5 13

20
16 13 1 3 2

20
15 10 1 2

11The 2021 State of Open Source Vulnerabilities by



Path Traversal

CWE-22, or Path Traversal errors, are caused by user input being used to construct 

a pathname for a file or directory potentially leading to files outside the scope of the 

application. Attackers can potentially view sensitive files like application code and data, 

credentials, and sensitive OS system files. Javascript sees a higher incidence of path 

traversal errors than the other languages.

Java Javascript Python PHP

20
20 13 16 4 5

20
19 14 15 34

20
18 35 38 3 3

20
17 14 30 3

20
16 42 22 1 1

20
15 9 13 5

12The 2021 State of Open Source Vulnerabilities by



Top 5 by Ecosystem

CWE-20

Java

CWE-79

CWE-611

CWE-264

CWE-200

CWE-79

Javascript

CWE-22

CWE-20

CWE-400

CWE-74

CWE-79

Python

CWE-20

CWE-200

CWE-264

CWE-399

CWE-79

PHP

CWE-89

CWE-200,CWE-94

CWE-352,CWE-20

As shown, several vulnerabilities are common to all language ecosystems, while a few 

seem to occur with higher frequency in certain languages. Additionally, the majority of 

CWEs discussed involve input validation and sanitization issues, further demonstrating 

how susceptible software is to these types of weaknesses. 

 

Across all ecosystems, CWE-79 (Cross-Site Scripting) leads as the most prevalent 

weakness, which is understandable considering how dynamic the internet is today. 

CWE-20 and CWE-200 are the other weaknesses that are seen in high numbers across 

all languages.

13The 2021 State of Open Source Vulnerabilities by



Most Prevalent Vulnerabilities Identified in Our 

Enterprise Customers

Not surprisingly, libraries that deal with handling user inputs top our list of most 

vulnerabilities found in enterprise software. Jackson-databind is an extremely popular 

Java library for parsing JSON and is used in many enterprise applications. Similarly, 

nokogiri is a Ruby library that parses HTML and XML input. Incorrect usage of inputs 

or unvalidated inputs are a source of many vulnerabilities, which explains why parsing 

libraries are often affected. Developers should take proactive measures to prevent 

these exploits from sneaking into their code and ensure third-party libraries are used 

safely.

#5

#1
jackson-databind

#2
nokogiri#3

actionpak

#4
lodash

#6
rack

tomcat-embed-core

14The 2021 State of Open Source Vulnerabilities by



15

Protecting Against Open Source Vulnerabilities

The open source vulnerability landscape is constantly evolving. Each year brings 

new libraries, new threats, and new cybersecurity technologies. Our data indicates 

that in 2019, CWE-79 (Cross-Site Scripting) was the most common CWE, Java the 

programming language with the most vulnerabilities, and jackson-databind the library 

with the most vulnerabilities. But future years may be very different. 

 

So while it’s impossible to know what, exactly, the threat landscape will look like as 

we move forward in 2021 and beyond, we do know that following a set of core best 

practices can go a long way toward helping organizations reduce the security risk in 

their use of open source:

Assume all inputs are malicious only accept inputs that have been verified or 

sanitized.

Conduct input validation on both the client side and server side.

Consider adopting SCA tools that integrate directly into the CI/CD pipeline

You can also visit our website for more information on open source vulnerability 

management.

The 2021 State of Open Source Vulnerabilities by



About FOSSA

Up to 90% of any piece of software is from open source, creating countless 

dependencies and areas of risk to manage. FOSSA is the most reliable automated 

policy engine for security management, license compliance, and code quality across 

the open source stack. With FOSSA, engineering, security, and legal teams all get 

complete and continuous risk mitigation for the entire software supply chain, integrated 

into each of their existing workflows. FOSSA enables organizations like Uber, Zendesk, 

Twitter, Verizon, Fitbit, and UiPath to manage their open source at scale and drive 

continuous innovation. Learn more at https://fossa.com.


